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ABSTRACT 

 

Even though the architecture of Inertial Navigation Systems (INS) remains relatively constant, a designer is faced with 

numerous choices when it comes to identifying the appropriate sensors, selecting among similar sensors and configuring the 

appropriate filtering.  Software tools that can simulate an INS are frequently used so support a specific INS model but there 

are relatively few general purpose tools that support arbitrary INS topologies.  In this paper we describe a framework that 

supports modeling and simulation of INS.  The framework is not tied to a specific INS topology and allows modeling at an 

arbitrary level of detail.  Some novel features of the framework include a data dictionary that contains the system interface 

specification and which allows automated checking of the interfaces between modules, a scenario generator that can 

automatically generate Monte Carlo simulations based on specific input parameters, and a data-aware post-processor that can 

compactly display simulation results.  The paper describes the framework and provides examples of its usage. 
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INTRODUCTION  

Navigation is the process of establishing a current location and then determining how best to proceed to a desired 

destination.  In early times, sailors were forced to maintain sight of land to facilitate navigation.  Today, very 

complex navigation systems use multiple sensor technologies and high-speed computers to guide vehicles across 

vast distances.  Due to the complexity of navigation systems and the need for sophisticated environments for test and 

evaluation, modeling and simulation frequently is used as the primary design and development tool.  However, 

except for the development of several special-purpose libraries of common navigation components for use with 

general-purpose system analysis tools, little has been done to develop a comprehensive framework for navigation 

system design and development. 

 

The purpose of this paper is to describe a framework that supports modeling and simulation of navigation systems.  

The framework is not tied to a specific system topology or component technology, but rather presents the engineer 

with a convenient and flexible environment in which to explore new design approaches.  The framework supports 

hierarchical design at an arbitrary level of detail.  Some additional novel features of the framework include a data 

dictionary that maintains signal consistency at device interfaces, a scenario generator that automatically facilitates 

Monte Carlo simulations, and a data-aware post-processor that supports appropriate statistical analysis and helpful 

data visualization capabilities. 

 

The paper is organized as follows.  In the second section, a brief description of current navigation technology is 

presented and the need for better simulation design and development tools is explained.  Desirable features of a 

simulation-based design framework are identified.  In the third section, the new simulation framework is presented.  

The overall framework architecture is described.  Then our approach to data management and post-processing 

support is presented.  Progress made in implementing a framework prototype is described in the fourth section.  In 

addition, a preliminary case-study is presented to demonstrate how the framework is used.  A conclusion is 

presented in the fifth section and includes an explanation of our vision for future enhancements of the framework.   

 

BACKGROUND AND MOTIVATION 

In this section, the present state of navigation system design is described and the reasons motivating the need for 

improved design environments are identified.  Then, desirable features for an enhanced simulation-based framework 

for navigation system design are presented. 

 

Current Navigation System Design 

One of the mature technologies for navigation is the inertial navigation system (INS).  An INS utilizes inertial 

sensors, accelerometers to measure accelerations along orthogonal axes and gyroscopes to measure angular rotation 

rates about these axes, to compute location with respect to a known starting position.  The main advantage of an INS 

is that it is self-contained; it does not require the sensing of external quantities in order to function.  The main 

disadvantage of an INS is that the inertial sensors exhibit small errors that result in a calculated position error that 

grows with elapsed time.  The use of very expensive inertial sensors, such as ring laser gyroscopes, can reduce the 

sensor error, but even these systems eventually exhibit unacceptable error over time.  Newer MEMS inertial sensor 
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technology has dramatically reduced cost, size, and power requirements of inertial sensors but at the expense of 

larger sensor errors. 

 

Another mature technology for navigation is the global positioning system (GPS).  A GPS utilizes timing 

information of signals received from satellite-based transmitters to triangulate position.  The main advantage of a 

GPS is that it provides highly accurate and time-independent position information.  The main disadvantage of GPS 

is that the system fails to work with interruption of received signals.  This can occur naturally due to geographic 

obstacles or inclement weather conditions, or because of man-made obstacles such as buildings or intentional signal 

jamming and blocking.  Many modern navigation systems utilize multiple sensor technologies.  A common 

approach is to utilize inertial sensors aided by GPS and perhaps other sensor technologies (Gade. 2009).  Depending 

on the level of integration among the components, such systems are referred to as loosely or tightly coupled INS, or 

deeply integrated GPS/INS units (the term ultra-tight coupling is also used) (Edwards, Clark, Bevly, 2010).  In such 

systems, the INS provides highly accurate short term position information while the aiding sensors are used to 

maintain the long term error of the overall system within acceptable bounds. 

 

The design and development process for integrated systems usually relies heavily on modeling and simulation.  INS 

system components often are highly nonlinear and the system signals are represented as stochastic processes, 

making an analytical analysis difficult or impossible.  In addition, design testing and evaluation requires a 

sophisticated test environment that is capable of synthesizing system inputs and then analyzing and visualizing 

system outputs.  Both of these issues suggest extensive use of modeling and simulation, especially in the early stages 

of prototype design and development.  One of the early descriptions of a GPS-aided INS is presented in (Orozco, 

Ruiperez, de la Cruz, and Aranda, 1995).  A set of Matlab library components is defined and used to develop a 

simulation model for the system.  In (Eck, Chapuis, and Geering, 2001), the design of an INS using low-cost inertial 

sensor components is presented.  The concept of a supporting simulation environment is introduced in this context.  

One of the first detailed presentations of how to utilize an extended Kalman filter to integrate GPS data with an INS 

is given in (Giroux, Gourdeau, and Landry, 2005).  A rapid prototyping environment, implemented in Matlab-

Simulink, is described.  Perhaps the most extensive effort to develop a generic simulation environment to support 

INS design is described in (Gade, 2004).  Called NavLab, the system simulator supports hierarchical design with a 

variety of aiding sensor technologies.  The simulator also includes provision for conducting prototype system test 

and evaluation.  However, the navigation system architecture is fixed and support for varying system topology and 

adding new system components is somewhat limited. 

 

Changing Design Environment   

We believe that two emerging factors will influence extensively the environment in which the next generation of 

INS will be designed and developed.  First, present-day navigation systems generally are acquired from a 

manufacturer as a total system solution.  These systems would be described as self-contained, black-box, proprietary 

solutions.  System modifications and upgrades can be made only by returning to the original manufacturer to initiate 

another purchase agreement.  Next generation navigation systems are likely to employ a more modular or 

component-based architecture.  Customers will have the flexibility to mix and match different system components, 

such as sensors, filters, and computing platforms, obtained through different vendors to realize the overall system.  

Second, the use of autonomous unmanned vehicles to address a rapidly expanding set of military and consumer 

applications will create a significant new market demand for navigations systems that are smaller, lighter, cheaper, 

and that are more capable than current systems.  These systems will utilize new sensor types and technologies 

designed especially to address emerging applications.  They will need to be more fault-tolerant and reliable.  These 

requirements again suggest a flexible and modular design and development approach where components from 

different manufacturers are easily integrated. 

 

This changing design environment requires development of more flexible and capable modeling and simulation 

design tools.  We propose a simulation-based design and development framework to support this new design 

environment.  The framework would host system component models from different manufacturers; where desired, 

component models could be defined at the input-output level to preserve proprietary design details.  Components 

could be interconnected in a variety of system topologies; automated interface checking would be used to ensure 

component interoperability.   In addition, the framework would provide a configurable and flexible test harness to 

test and evaluate system performance.  A more detailed description of the requirements for this framework is 

presented in the following section. 
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Requirements for Design Framework 

The proposed framework should support both the design process and the test and evaluation process associated with 

the development of a new navigation system.  Therefore, the framework must provide libraries of INS components 

and a workspace where these components can be interconnected to form a complete system.  In addition, the 

framework must provide the test harness necessary to stimulate the system under test and to analyze and visualize 

the system response.  The proposed conceptual configuration of the framework is shown in Figure 1.  The test 

harness includes components to generate input signals to stimulate the navigation system as well as analysis and 

visualization components to investigate the system output.  The test harness also includes the framework controller.  

The navigation system model represents the system under test.  The system under test may include the entire 

navigation system or just some subset of system components designated for testing.  In that case, essential system 

components not included as part of the system under test are included as part of the test harness.  The requirements 

for the framework are presented in this section categorized by framework functionality. 

 

Components
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Scenario Development and Control

Navigation System Model

System Test Harness

System
Input

Analysis
&

Visualization

Truth
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Truth

Test
Input
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Output

 

Figure 1.  Framework Conceptual Configuration. 

 

The framework should provide the following capabilities in a flexible and user-friendly user environment. 
 

Expected Users. Framework users are expected to have an engineering background and familiarity with the 

following: navigation system terminology; system modeling and analysis; use and limitations of modeling and 

simulation of dynamical systems; and Monte Carlo analysis of stochastic systems. 
 

Scenario Development and Control.  The framework should support the notion of a “scenario” that includes: system 

and test harness configuration; input and output data file management; input trajectory generation; specification of 

test parameters and performance metrics; and output analysis and data visualization.  System control and operation 

should be available to the user through a simple and flexible graphical user interface.  The user should have the 

capability to select or define a scenario, configure and execute desired experiments, and analyze and display 

experimental results via this user interface.  
 

System Input.  The system input component should be able to generate a vehicle trajectory from a set of desired 

waypoints and descriptions of vehicle dynamics and control strategies.  Alternately, the system should accept data 

files representing actual vehicle trajectories. 
 

Simulation Core.  The framework should support graphical block diagram development of various navigation 

system architectures and the execution of these system models using real-time or best-effort-time strategies.  The 

simulation core consists of model libraries organized in logical groupings by function.  The simulation core libraries 

also are used to implement components comprising the test harness. 
 

System Execution.  The framework should support sequential and concurrent execution of the primary model 

components: Input Generation; Model Execution; and Output Analysis.  In sequential execution, each primary 



 

 

 

MODSIM World 2014 

2014 Paper No. 1455 Page 5 of 10 

model component is executed separately with an output data file from one component being used as the input data 

file for the next component.  In concurrent execution, all three primary components are executing simultaneously 

with data flowing across the modules during execution. 
 

Analysis and Visualization.  The framework should support analysis and visualization functions required to display 

and/or compare performance characteristics of navigation system models.  Analysis capabilities should support 

single-run and multiple-run simulation experiments.  Various two-dimensional and three-dimensional data 

visualizations should facilitate views of truth verses predicted performance for a single system or a comparison of 

system alternatives under identical input conditions. 

 

 SIMULATION FRAMEWORK 

 

Architecture Description 

The framework is partitioned into three primary components: trajectory generator, simulation core, and the analysis 

and visualization component.  The primary components are supported by a set of user tools that facilitate selecting, 

importing, and editing of data files as well as tools to configure and control simulation execution.  The overall 

framework architecture is shown in Figure 2. 

 

Figure 2.  Framework Architecture. 

 

The trajectory generator contains modules for modeling platform characteristics, environmental factors, platform 

control strategies, and trajectory generation.  The simulation core contains modules for representing system sensors, 

mechanization strategies, and filter strategies.  The analysis and visualization component contains modules to 

implement various analysis methods, 2D charting and data plots, 3D visualizations and animations, and management 

functions to configure system performance tests and system comparative evaluations. 

 

We have selected Matlab-Simulink as the foundation upon which to construct the framework.  Matlab is a high-level 

language that provided and interactive environment for numerical computation and simulation.  Simulink is an 

environment that supports model-based design and simulation.  It utilizes a graphical environment that facilitates 

specification of the navigation system and associated test harness through interconnected block.  In addition, it 

includes a variety of solvers for simulating dynamical systems.  Matlab-Simulink is a modeling and simulation 

environment that already is familiar to many engineers, and that supports development of the support capabilities we 

desire in the framework. 

  

Interface Specification Management 

A key aspect of the simulation framework is the use of a Data Dictionary (DD), a user-defined table that enumerates 

all possible input/output connections among blocks in the framework.  The DD is a KxK matrix, where K is the 
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number of user-defined data types.  Each entry in the DD specifies if connections between the respective data types 

are allowed: 

         [ ][ ]   {
                      

                         
         

A strict compatibility DD would be a diagonal matrix, effectively indicating that only identical data types are 

compatible, but the designer is free to define the DD as required.  For example, if a given input is compatible with 

more than one type of outputs, compatibility classes can be created by setting additional entries of the DD to 1. 

 

The DD is an integral part of the framework because one of the requirements for a block to be usable in the 

framework is that all inputs and outputs be tagged with one of the entries in the DD.  During the design process, any 

time a connection is made between blocks, the DD is consulted as to the validity of the connection; if the connection 

is not allowed an error message is displayed, along with a list of compatible outputs and the connection is rejected.   

 

Using a DD provides several advantages when composing large systems by combining existing and newly 

developed modules.  At a basic level, the DD constraints ensure that only appropriate data types are linked.  For 

example, a module tagged as outputting an acceleration value is not allowed to connect to a module tagged as 

expecting a velocity value.  In addition to basic compatibility check, the DD can also be used to ensure that 

input/output linkages obey appropriate axis conventions, utilize the same units, or have compatible time-steps.  

Doing so requires that the designer explicitly incorporate this functionality in the DD, which can be done by 

encoding such information in the tag itself.  As an example, if a module expects as input an inertial acceleration 

three element vector represented in SI units, the tag could be labeled as ACC_3_INRT_SI, whereas the same 

acceleration represented in the chassis coordinate system would be labeled as ACC_3_CHAS_SI.  Any number of 

variations can be used, as there is no inherent limitation to the size of the DD.  Whereas this approach appears to be 

shifting the complexity to the user, in reality it exposes the existing need to properly document all input/output 

parameters associated with modular blocks that can be used in the overall design.  In addition to simplifying the 

construction of a navigation system and providing confidence about the structure of the overall model, a carefully 

designed DD can act as an interface specification document by providing all required information about every 

input/output connection among modules.  

 

For a simulation model that is designed from scratch, a prudent design strategy would be to begin by defining the 

entries of the DD before defining the model’s structure.  On the other hand, most activities for which the framework 

is envisioned to support do not begin with a blank model; instead utilize partially constructed models into which 

new modules need to be incorporated.  To accommodate this, an existing DD (associated with an existing model) 

can be extended by merging a new DD (associated with an imported module).  This merging operation involves 

extending the size of the DD to accommodate the new tags and the subsequent definition of the new cells.  The two 

dictionaries may share tags, provided that the identical tags convey semantically identical meanings.  If that is not 

the case, the incoming tags have to be renamed, something that can trivially be done before merging.  If the two 

dictionaries do not share tags, or share tags that are semantically identical, then, there are three possible situations 

for each cell in the merged DD: 

 

1) The new cell conveys compatibility between two tags both of which are defined in either of the two DDs 

2) The new cell conveys compatibility between two tags both of which are defined in both of the DDs 

3) The new cell conveys compatibility between two tags that belong to different DDs. 

 

This operation is shown below, where the existing DD containing tags (a, b, c) is merged with a new dictionary 

containing tags (b,d), and for this example, tags b in the original and merging dictionaries are semantically identical. 
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In case (1), the value from the original DD is copied.  In the example above, the entry for Dc,c only appears on the 

main dictionary (D) and can thus be copied to the merged output.   
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In case (2), which only occurs if the existing and new DDs share tags, if the entries are the same (i.e., either both 0 

or both 1), then that value is copied to the merged DD.  If the entries are different, a conflict has been identified; 

such a conflict is an indication that there are semantic differences between tags in the two DDs, something that must 

be handled manually.  In the example above, this would happen if the value of  Db,b is different than D’b,b.   

 

In case (3), the designer must assess the compatibility of the new relationship.  In the example above, the value of 

the entry     
̅̅ ̅̅ ̅  would have to be defined after inspecting the relationship between tag a (in the existing DD) and tag 

d (in the incoming DD).  A reasonable default value would be 0, as that indicates that unrelated tags are not 

compatible. 

 

The value of aforementioned process for managing and merging DDs partially lies in the fact that it can be 

automated but most importantly because it forces the designer to evaluate and assess the correctness of the interfaces 

among all module input/output.  By evaluating the relationship among tags, subtle differences in interfaces or 

conventions that would otherwise remain hidden can be identified and handled.  The net result is that defining a 

well-documented interface becomes an intrinsic part of the design process, as opposed to an afterthought. 

 

Parameter Variation 

The model of a navigation system is rarely deterministic in nature because of the presence of stochastic noise and 

the use of probabilistic approaches for modeling system components.  Implementing such models invariably 

leverages pseudo-random number generators; should the same initial seed be used, running the model multiple types 

will generate the same output, something that is desirable while debugging the simulation system itself.  However, 

from the standpoint of the navigation system designer, varying the random seed is desirable as a means to better 

understand the operation of the system.  The framework allows management of the random generation seeds thus 

providing flexibility to the designer. 

 

In addition to managing random number seeding, the framework provides the ability to perform Monte-Carlo 

simulations while varying input parameters.  By leveraging tags in the DD, the system is aware of which signals are 

considered inputs/outputs or model parameters.  Once a model is completed, the system allows the designer to select 

a set of model parameters, specify sweep ranges and simulation sample sizes.  A batch-mode simulation then takes 

place where model parameters are perturbed as specified and multiple simulation runs execute each with different 

pseudo-random seeds.  The resultant outputs accumulate to an output database, and each instance is linked to the 

specific set of parameters associated with the simulation run. 

 

Post-Processing Support 

As the simulation is executed, estimated positioning data is accrued.  In order to process these data, we can attach a 

post processing block.  Post-processing blocks can perform any number of tasks depending on the purpose of a 

particular simulation run.  It could add the results of the simulation run to an archive of previous simulation results, 

launch a visualization of some aspect, transform the data to another format or specification, or some combination of 

these options.  The DD ensures that there will be no problems with data types or structure to impede whatever post 

processing method is chosen.  In cases that the output consists of multiple execution runs, data can be shown in 

isolation or cumulatively. 

 

The initial prototype chooses to implement a visualization of the estimated trajectory, along with a reference true 

trajectory, as the post-processing block.  When the simulation has finished creating an estimated trajectory, the 

Common Geospatial Extensible Navigation Toolkit (COGENT) is automatically launched.  The estimated trajectory 

is saved to a file, which is then sent to COGENT for visualization.  Additional runs with altered random seeds can 

be performed, and each time the result will be added to the visualization.   This enables to the user to easily visualize 

the results of a Monte Carlo experiment of the possible trajectories created by the navigation simulation, because the 

results of each trial are archived and added to COGENT. 

 

Figure 3 shows the results of two simulation runs, with the solid red line depicting the true trajectory of the ship and 

the two dotted blue lines representing the estimated trajectory results of the INS simulation.  For simplicity, only 

two output runs are shown, each with a different random seed.  In cases where multiple simulation runs are available 
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after a Monte-Carlo simulation, they can all be displayed concurrently, including the possibility of grouping output 

runs according to which parameter was swept to generate the outputs. 

 

 

 

Figure 3.  Post-Processing Visualization in COGENT. 

 

PROTOTYPE IMPLEMENTATION 

 

The simulation was implemented in Simulink, with the addition of various MatLab scripts. The environment was 

chosen to help integrate various model components, which may come from multiple parties. The simulation is 

comprised of a series of scripts and Simulink model blocks. The DD is defined in a set of Excel spreadsheets, which 

define the valid connections and port tags of each block in the simulation as shown in Figure 4.  

 

 
Figure 4. Example connection matrix for the DD 

 

The DD is constructed using a series of scripts and the two Excel spreadsheets described above. When the toolbox is 

opened, the DD goes through the spreadsheets and creates a set of maps of the block names and port types. Once a 

block is added to the model, a script is activated that checks if that block is defined in the DD and creates an 

instance of that block in the DD for the model if it is defined. The DD is used to ensure two blocks can interact by 

calling an action script when a user attempts to connect two blocks. The script looks at the port tags of the blocks 

and if they are compatible the DD allows the connection to occur. Otherwise, the DD generates an error message 

that is displayed to the user, warning them the two blocks cannot connect as shown in Figure 5.  
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Figure 5.  Sample Simulation Error Message. 

 

Along with the scripts and spreadsheets that comprise the DD, a series of Simulink blocks have been developed and 

compiled into a Simulink toolbox. The toolbox has been divided into two main sections, the test bed and the system 

under test. The test bed section makes up the test harness for the simulation, supplying system inputs and analyzing 

system output. The system under test section contains all the components the user wishes to insert into the system. 

These blocks include INS models, sensor models, and various filters as seen in Figure 6. One of the key features of 

this framework is the ability of outside users to develop their own models and filters that can be easily inserted into 

the simulation, so long as they adhere to the DD. 

 

 
Figure 6. Simulink toolbox structure.  

 

CONCLUSION 

 

The paper described a framework that can be used to build navigation system models by combining model blocks of 

arbitrary granularity.  The goal of this framework is to leverage modeling and simulation to allow users to 

experiment with alternative system structures, equipment choices, and filter designs.  Key contributions of the 

framework include a flexible architecture that allows the designer to delineate the model under test versus the test 

fixture, the use of a data dictionary that helps maintain appropriate interface connections among system modules, an 

experiment control module that automates parameter sweeping and Monte-Carlo-type simulations as well as flexible 

input/output hooks to trajectory generation and visualization and post-processing tools. 

 

At the time of the writing of this paper, a prototype of the framework has been built and the majority of the features 

have been incorporated into the prototype, with future work focusing on refining capabilities and construction of a 

larger example that will help validate the overall approach. 
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